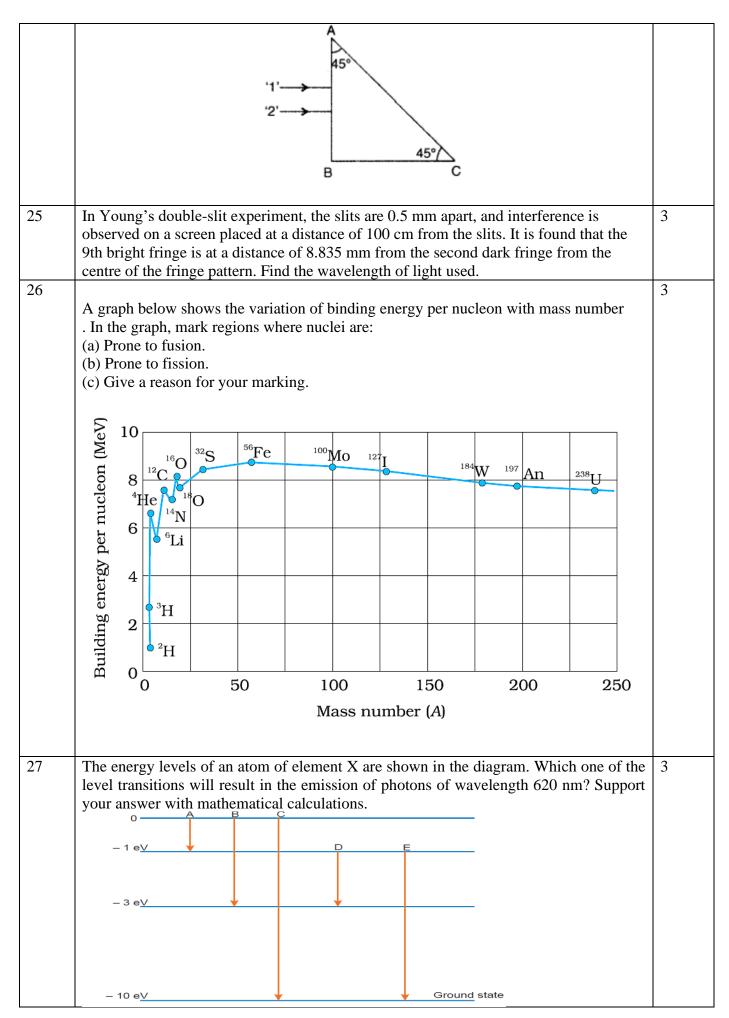
### BRAIN INTERNATIONAL SCHOOL SESSION 25-26

# PRACTICE PAPER -1 CLASS -XIITH SUBJECT: PHYSICS (042)

Max. Marks: 70 Time allotted: 3 hrs.


### **General instructions:**

- 1. There are 33 questions in all. All questions are compulsory.
- 2. This question paper has five sections: Section A, Section B, Section C, Section D and Section E. All sections are compulsory.
- 3. Section A contains 16 questions (twelve MCQ and four Assertion-Reasoning) of one mark each, Section B contains five questions of two marks each, Section C contains seven questions of three marks each, Section D contains two case study-based questions of four marks each, and Section E contains three long answer questions of five marks each.
- 4. There is no overall choice. However, an internal choice has been provided for one question in Section B, one in Section C, one in each CBQ in Section D, and all three questions in Section E. You must attempt only one of the choices in such questions.
- 5. Use of calculators is not allowed.
- 6. You may use the following values of physical constants wherever necessary
  - (a)  $c = 3 \times 10^8 \text{ m/s}$ (b)  $m_e = 9.1 \times 10^{-31} \text{ kg}$ (c)  $m_p = 1.7 \times 10^{-27} \text{ kg}$ (d)  $e = 1.6 \times 10^{-19} \text{ C}$ (e)  $\mu_0 = 4\pi \times 10^{-7} \text{ T mA}^{-1}$ (f)  $h = 6.63 \times 10^{-34} \text{ J s}$ (g)  $\epsilon_0 = 8.854 \times 10^{-12} \text{C}^2 \text{N}^{-1} \text{m}^{-2}$

| S.No.     | Question                                                                            |                                            |          | Marks                              |   |
|-----------|-------------------------------------------------------------------------------------|--------------------------------------------|----------|------------------------------------|---|
| Section-A |                                                                                     |                                            |          |                                    |   |
| 1         | Two-point charges placed in a medium of dielectric constant 3 are at a distance 'r' |                                            |          |                                    | 1 |
|           | betwee                                                                              | n them and experience an electrostatic f   | orce 'F' | '. The electrostatic force between |   |
|           | them in                                                                             | n a vacuum at the same distance 'r' will   | be       |                                    |   |
|           | (a)                                                                                 | 3F                                         | (b)      | F                                  |   |
|           | (c)                                                                                 | F/2                                        | (d)      | F/3                                |   |
| 2         | The universal property among all substances is                                      |                                            |          | 1                                  |   |
|           | (a)                                                                                 | Diamagnetism                               | (b)      | Paramagnetism                      |   |
|           | (c)                                                                                 | Ferromagnetism                             | (d)      | Both (a) and (b)                   |   |
| 3         | The dir                                                                             | rection of magnetic field lines close to a | straight | conductor carrying current will    | 1 |
|           | be                                                                                  |                                            |          |                                    |   |
|           | (a)                                                                                 | Along the length of the conductor          | (b)      | Radially outward                   |   |
|           | (c)                                                                                 | Circular in a plane perpendicular to       | (d)      | Helical                            |   |
|           |                                                                                     | the conductor                              |          |                                    |   |
| 4         | The induced charge in electromagnetic induction is independent of                   |                                            | 1        |                                    |   |
|           | (a)                                                                                 | Flux change                                | (b)      | Time                               |   |
|           | (c)                                                                                 | Coil resistance                            | (d)      | Magnetic Field Strength            |   |

| 5   | In a n-1 | type semiconductor, the current cond                                   | uction is d  | ue to                                 | 1 |
|-----|----------|------------------------------------------------------------------------|--------------|---------------------------------------|---|
| 3   | (a)      | Holes                                                                  | (b)          | Atoms                                 | 1 |
|     | (c)      | Electrons                                                              | (d)          | Protons                               |   |
| 6   |          | mpound microscope, the images form                                     | /            | <u> </u>                              | 1 |
| U   | respect  |                                                                        | ica by the   | objective and the eyepiece are        | 1 |
|     | (a)      | Virtual, real                                                          | (b)          | Real, virtual                         |   |
|     | (c)      | Virtual, virtual                                                       | (d)          | Real, Real                            |   |
| 7   |          | AC is applied to a circuit consisting                                  | \ /          | · · · · · · · · · · · · · · · · · · · | 1 |
| ,   |          | nce. If the voltage across the resistance                              |              |                                       | 1 |
|     | (a)      | 16V                                                                    | (b)          | 10V                                   |   |
|     | (c)      | 8V                                                                     | (d)          | 6V                                    |   |
| 8   |          | nsulator, the forbidden energy gap be                                  | \ /          |                                       | 1 |
| O   |          | s of the order of                                                      | iween a va   | mence band and a conduction           | 1 |
|     | (a)      | Equal to 3 eV                                                          | (b)          | Less than 3 eV                        |   |
|     | (c)      | Greater than 3 eV                                                      | (d)          | Both (a) and (b)                      |   |
| 9   | · /      | ources of monochromatic light are sai                                  | \ /          | ( )                                   | 1 |
| 9   |          | ave the same                                                           | u to be col  | nerent if fight waves produced by     | 1 |
|     |          |                                                                        | (b)          | Frequency only                        |   |
|     | (a)      | Frequency and constant phase differences                               | (0)          | Frequency only                        |   |
|     | (a)      | Amplitude only                                                         | (4)          | Amplitude and some                    |   |
|     | (c)      | Ampilitude only                                                        | (d)          | Amplitude and same wavelength         |   |
| 10  | Electro  |                                                                        |              | wavelength                            | 1 |
| 10  |          | magnetic waves transport                                               | (1-)         | Engage and recording 4h               | 1 |
|     | (a)      | Charge and momentum                                                    | (b)          | Frequency and wavelength              |   |
| 1.1 | (c)      | Energy and momentum                                                    | (d)          | Wavelength and energy                 | 1 |
| 11  |          | d $r_2$ are the radii of the atomic nuclei                             | or mass ni   | umbers 4 and 32, respectively,        | 1 |
|     |          | e ratio $(r_1/r_2)$ is                                                 | (1-)         | 1.2                                   |   |
|     | (a)      | 1:2                                                                    | (b)          | 1:3                                   |   |
| 10  | (c)      | 1:4                                                                    | (d)          | 1:5                                   | 1 |
| 12  |          | ground state ionisation energy of the I                                |              | 13.6 eV, the energy required to       | 1 |
|     |          | a H-atom from the second excited sta                                   |              | 24.77                                 |   |
|     | (a)      | 1.51 eV                                                                | (b)          | 3.4 eV                                |   |
|     | (c)      | 13.6 eV                                                                | (d)          | 12.1 eV                               |   |
|     | <b>.</b> | Assertion and Reas                                                     |              |                                       |   |
|     |          | ions: In each of the following question                                |              |                                       |   |
|     | -        | tatement of reason (R). While answer                                   | ering quest  | tions, choose the correct one and     |   |
|     | mark it  |                                                                        | <b>D</b> ) . |                                       |   |
|     | (a)      | If both assertion (A) and reason (                                     | K) are tru   | ie and reason (R) is the correct      |   |
|     | (1)      | explanation of the assertion (A).                                      |              | 1 (D) : (4)                           |   |
|     | (b)      | If both assertion (A) and reason (R                                    | ) are true,  | but reason (R) is not the correct     |   |
|     | (a)      | explanation of the assertion (A).                                      | \ ia falaa   |                                       |   |
|     |          | If assertion (A) is true and reason (R)                                |              |                                       |   |
|     | (a)      | If both assertion (A) and reason (R)                                   | are raise    |                                       |   |
| 12  | Aggaret  | ion. The electrostatic force between                                   | ha plataa d  | of a abanced isolated consoitor       | 1 |
| 13  |          | ion: The electrostatic force between t                                 | -            |                                       | 1 |
|     |          | ses when dielectric fills whole space                                  | -            |                                       |   |
|     |          | n: The electric field between the plate                                |              | ged isorated capacitance increases    |   |
| 1 / |          | lielectric fills whole space between pl                                |              | I maximum wayalanath is 3/            | 1 |
| 14  |          | ion: In Lyman series, the ratio of mir                                 |              | _                                     | 1 |
|     |          | n: Lyman series constitute spectral line around state of hydrogen atom | ies corresp  | boliding to transition from higher    |   |
| 15  |          | to ground state of hydrogen atom.                                      | To moonat    | is flux through a sail maintains a    | 1 |
| 15  |          | ion: If the circuit is continuous, a large                             | ge magneti   | ic mux unrough a con maintains a      | 1 |
|     | current  | in the coil.                                                           |              |                                       |   |

|       | <b>Reason:</b> Only a change in magnetic flux will maintain an induced current in the coil.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 16    | <b>Assertion:</b> The kinetic energy of photoelectrons emitted by a photosensitive surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 |
|       | depends upon the intensity of the incident photon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|       | <b>Reason:</b> The ejection of electrons from the metallic surfaces is possible with the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|       | frequency of incident photons below the threshold frequency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|       | Section-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| 17    | The relative magnetic permeabilities of the two magnetic materials, A and B, are 0.96 and 500, respectively. Which magnetic materials, A and B, are they?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 |
| 18    | Derive an expression for the drift velocity of free electrons in a conductor in terms of relaxation time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 |
| 19    | The self-inductance of a solenoid of 600 turns is 108 mH. Find the self-inductance of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 |
|       | coil with 500 turns with the same length, radius, and medium.  OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|       | Calculate the current drawn by the primary of a transformer, which steps down 200V to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
|       | 20V to operate a device of resistance 20 ohm. Assume the efficiency of the transformer to be 80%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| 20    | The graph in Figure shows the variation of stopping potential with frequency $v$ of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 |
|       | incident radiation for two photosensitive metals, X and Y.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |
|       | <u>↑</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|       | v v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|       | A 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|       | Stanning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|       | Stopping Vo 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|       | Stopping V <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|       | Stopping V <sub>0</sub> Potential V 0 0.5 1.0 Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|       | 0 05 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|       | O.5 1.0 Frequency  Which of the metals has a large threshold wavelength? Give reason.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| 21    | Which of the metals has a large threshold wavelength? Give reason.  How is forward biasing different from reverse biasing in a p-n junction diode? Justify                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 |
| 21    | Which of the metals has a large threshold wavelength? Give reason.  How is forward biasing different from reverse biasing in a p-n junction diode? Justify your answer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 |
|       | Which of the metals has a large threshold wavelength? Give reason.  How is forward biasing different from reverse biasing in a p-n junction diode? Justify your answer.  Section-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| 21    | Which of the metals has a large threshold wavelength? Give reason.  How is forward biasing different from reverse biasing in a p-n junction diode? Justify your answer.  Section-C  Two point electric charges of value q and 2q are kept at a distance d apart from each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 |
|       | Which of the metals has a large threshold wavelength? Give reason.  How is forward biasing different from reverse biasing in a p-n junction diode? Justify your answer.  Section-C  Two point electric charges of value q and 2q are kept at a distance d apart from each other in air. A third charge Q is to be kept along the same line in such a way that the net                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |
| 22    | Which of the metals has a large threshold wavelength? Give reason.  How is forward biasing different from reverse biasing in a p-n junction diode? Justify your answer.  Section-C  Two point electric charges of value q and 2q are kept at a distance d apart from each other in air. A third charge Q is to be kept along the same line in such a way that the net force acting on q and 2q is zero. Calculate the position of charge Q in terms of q and d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 |
|       | Which of the metals has a large threshold wavelength? Give reason.  How is forward biasing different from reverse biasing in a p-n junction diode? Justify your answer.  Section-C  Two point electric charges of value q and 2q are kept at a distance d apart from each other in air. A third charge Q is to be kept along the same line in such a way that the net force acting on q and 2q is zero. Calculate the position of charge Q in terms of q and d.  A long straight wire in the horizontal plane carries a current of 50 A in north to south                                                                                                                                                                                                                                                                                                                                                                         |   |
| 22    | Which of the metals has a large threshold wavelength? Give reason.  How is forward biasing different from reverse biasing in a p-n junction diode? Justify your answer.  Section-C  Two point electric charges of value q and 2q are kept at a distance d apart from each other in air. A third charge Q is to be kept along the same line in such a way that the net force acting on q and 2q is zero. Calculate the position of charge Q in terms of q and d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 |
| 22    | Which of the metals has a large threshold wavelength? Give reason.  How is forward biasing different from reverse biasing in a p-n junction diode? Justify your answer.  Section-C  Two point electric charges of value q and 2q are kept at a distance d apart from each other in air. A third charge Q is to be kept along the same line in such a way that the net force acting on q and 2q is zero. Calculate the position of charge Q in terms of q and d.  A long straight wire in the horizontal plane carries a current of 50 A in north to south direction. Give the magnitude and direction of magnetic field at a point 2.5 m east of the                                                                                                                                                                                                                                                                              | 3 |
| 22    | Which of the metals has a large threshold wavelength? Give reason.  How is forward biasing different from reverse biasing in a p-n junction diode? Justify your answer.  Section-C  Two point electric charges of value q and 2q are kept at a distance d apart from each other in air. A third charge Q is to be kept along the same line in such a way that the net force acting on q and 2q is zero. Calculate the position of charge Q in terms of q and d.  A long straight wire in the horizontal plane carries a current of 50 A in north to south direction. Give the magnitude and direction of magnetic field at a point 2.5 m east of the wire.                                                                                                                                                                                                                                                                        | 3 |
| 22    | Which of the metals has a large threshold wavelength? Give reason.  How is forward biasing different from reverse biasing in a p-n junction diode? Justify your answer.  Section-C  Two point electric charges of value q and 2q are kept at a distance d apart from each other in air. A third charge Q is to be kept along the same line in such a way that the net force acting on q and 2q is zero. Calculate the position of charge Q in terms of q and d.  A long straight wire in the horizontal plane carries a current of 50 A in north to south direction. Give the magnitude and direction of magnetic field at a point 2.5 m east of the wire.  OR                                                                                                                                                                                                                                                                    | 3 |
| 22    | Which of the metals has a large threshold wavelength? Give reason.  How is forward biasing different from reverse biasing in a p-n junction diode? Justify your answer.  Section-C  Two point electric charges of value q and 2q are kept at a distance d apart from each other in air. A third charge Q is to be kept along the same line in such a way that the net force acting on q and 2q is zero. Calculate the position of charge Q in terms of q and d.  A long straight wire in the horizontal plane carries a current of 50 A in north to south direction. Give the magnitude and direction of magnetic field at a point 2.5 m east of the wire.  OR  Using Ampere's circuital law, obtain an expression for the magnetic field along the axis of a solenoid of length l and having N number of turns and carrying current I.  Two monochromatic light rays are incident normally on the face AB of an isosceles right- | 3 |
| 22 23 | Which of the metals has a large threshold wavelength? Give reason.  How is forward biasing different from reverse biasing in a p-n junction diode? Justify your answer.  Section-C  Two point electric charges of value q and 2q are kept at a distance d apart from each other in air. A third charge Q is to be kept along the same line in such a way that the net force acting on q and 2q is zero. Calculate the position of charge Q in terms of q and d.  A long straight wire in the horizontal plane carries a current of 50 A in north to south direction. Give the magnitude and direction of magnetic field at a point 2.5 m east of the wire.  OR  Using Ampere's circuital law, obtain an expression for the magnetic field along the axis of a solenoid of length 1 and having N number of turns and carrying current I.                                                                                           | 3 |



Page **4** of **7** 

|          | With the                                                                                          | - 1 - 1 £ : : : : : 1 1 - : - 1                                               |           |                                    | 1 |  |
|----------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------|------------------------------------|---|--|
|          |                                                                                                   | e neip of a circuit diagram, explain nov                                      | v a p-n i | unction diode works as a full wave | 3 |  |
|          | ectifier                                                                                          | . Draw its input and output waveform                                          |           |                                    |   |  |
|          |                                                                                                   | ·                                                                             |           |                                    |   |  |
|          |                                                                                                   | Sectio                                                                        | n-D       |                                    |   |  |
|          |                                                                                                   | ngement of two conductors separated                                           |           |                                    | 4 |  |
|          |                                                                                                   | ectric charge and electric energy. Such                                       | •         | •                                  |   |  |
|          |                                                                                                   | a capacitor can store, the greater is its                                     |           |                                    |   |  |
|          |                                                                                                   | capacitors having equal and opposite                                          |           |                                    |   |  |
|          |                                                                                                   | al difference V between them. By the                                          |           |                                    |   |  |
|          |                                                                                                   | the charge Q to the potential difference                                      | •         |                                    |   |  |
|          | •                                                                                                 | e charge Q on the positive plate. To ance of a capacitor is a constant and of |           |                                    |   |  |
|          |                                                                                                   | sizes and relative positions of the two                                       |           |                                    |   |  |
|          |                                                                                                   | them. The unit of capacitance is 1                                            |           |                                    |   |  |
|          |                                                                                                   | ent units commonly used. Capacitor                                            | ,         |                                    |   |  |
|          |                                                                                                   | ed by two long strips of dielectrics, i                                       |           |                                    |   |  |
|          |                                                                                                   | ic materials are plastics (such as poly                                       |           |                                    |   |  |
|          |                                                                                                   | Capacitors are widely used in television                                      |           | 1 2                                |   |  |
|          |                                                                                                   | -                                                                             | 1         |                                    |   |  |
| <u>(</u> | (i) A pa                                                                                          | arallel plate capacitor C has charge Q.                                       | The actu  | ual charge on its plates are:      |   |  |
|          | (a)                                                                                               | +Q, +Q                                                                        | (b)       | +Q/2, +Q/2                         |   |  |
|          | (c)                                                                                               | +Q, -Q                                                                        | (d)       | +Q/2, -Q/2                         |   |  |
| <u>(</u> | (ii) A parallel plate capacitor is charged. If the plate are pulled apart,                        |                                                                               |           |                                    |   |  |
|          | (a)                                                                                               | The capacitance increases                                                     | (b)       | The potential difference           |   |  |
|          |                                                                                                   |                                                                               |           | increases                          |   |  |
|          | (c)                                                                                               | The total charge increase                                                     | (d)       | The charge and the potential       |   |  |
|          |                                                                                                   |                                                                               |           | difference remains the same        |   |  |
|          | (iii) What is the value of constitution of a constitution if it has a change of OC and valtage    |                                                                               |           |                                    |   |  |
|          | (iii) What is the value of capacitance of a capacitor if it has a charge of 9C and voltage of 5V? |                                                                               |           |                                    |   |  |
|          | (a)                                                                                               | 1.8F                                                                          | (b)       | 45F                                |   |  |
|          | (c)                                                                                               | 8.1F                                                                          | (d)       | 4.5F                               |   |  |
|          | (0)                                                                                               | 0.11                                                                          | (u)       | 1.31                               |   |  |
| (        | (iv). F                                                                                           | How to increase the capacity of the par                                       | allel nla | te capacitor?                      |   |  |
|          | (a)                                                                                               | Decrease the area of the plate                                                | (b)       | Increase the area of the plate     |   |  |
|          | (c)                                                                                               | Increase the distance between the                                             | (d)       | Both (a) and (b)                   |   |  |
|          | ` /                                                                                               | plate                                                                         |           |                                    |   |  |
|          |                                                                                                   | OR                                                                            |           |                                    |   |  |
| <u>(</u> | ( <b>v</b> ). En                                                                                  | ergy is stored in a capacitor in the form                                     | n of      |                                    |   |  |
|          | (a)                                                                                               | Magnetic energy                                                               | (b)       | Light energy                       |   |  |
|          | (c)                                                                                               | Heat energy                                                                   | (d)       | Electrostatic energy               |   |  |
|          |                                                                                                   | y and Rahul were both creating a serie                                        |           |                                    | 4 |  |
|          |                                                                                                   | The waves formed a pattern similar                                            |           |                                    |   |  |
|          | Shubham, advised Kartikay and Rahul not to play with water for a long time. He th                 |                                                                               |           |                                    |   |  |
|          |                                                                                                   | d beautiful patterns of ripples that                                          |           |                                    |   |  |
|          | Lakshay poured an oil drop on them. Lakshay, a 12th-standard student, had explained               |                                                                               |           |                                    |   |  |
| _ t      | ne caus                                                                                           | se of colourful ripple patterns to Kartik                                     | tay.      |                                    | ] |  |



(i) Name the phenomenon involved in the activity

| Ì | (a) | Reflection   | (b) | Refraction   |
|---|-----|--------------|-----|--------------|
|   | (c) | Interference | (d) | Polarisation |

(ii) A surface over which an optical wave has a constant phase is called.

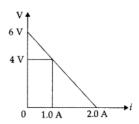
| (a) | Wave       | (b) | Wavefront     |
|-----|------------|-----|---------------|
| (c) | Elasticity | (d) | None of these |

(iii) Which of the following is correct for light diverging from a point source?

| (a) | The intensity decreases in proportion | (b) | The wavefront is parabolic. |
|-----|---------------------------------------|-----|-----------------------------|
|     | to the distance squared               |     |                             |
| (c) | The intensity at the wavelength does  | (d) | The intensity increases in  |
|     | depend on the distance.               |     | proportion to the distance  |
|     |                                       |     | squared                     |

(iv) The phenomena which is not explained by Huygens's construction of

| (a) | Wavefront  | (b) | Diffraction       |
|-----|------------|-----|-------------------|
| (c) | Refraction | (d) | Origin of spectra |


OR

(v) Huvgens's concept of secondary wave

|   | ( , ) ====] | Some a control of a social and |     |                                 |
|---|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------|
|   | (a)         | allows us to find the focal length of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (b) | is a geometrical method to      |
|   |             | thick lens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | find a wavefront                |
|   | (c)         | is used to determine the velocity of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (d) | is used to explain polarisation |
| l |             | light                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                                 |

### **Section-E**

31 (a) The graph shows a plot of terminal voltage 'V' versus the current 'i' of a given cell.



Calculate from the graph

- (I) emf of the cell and. (ii) internal resistance of the cell.
- (b) Write any two factors on which internal resistance of a cell depends.

#### OR

(a) Using Gauss's law, derive an expression for the electric field at any point outside a uniformly charged thin spherical shell of radius 'R' and charge density  $\sigma$  C/m<sup>2</sup>.

- (b) Draw the field lines when the charge density of the spherical shell is (i) positive, (ii) negative (c) A uniformly charged conducting spherical shell of 2.5 m in diameter has a surface charge density of 100 µC/m<sup>2</sup>. Calculate the total electric flux passing through the spherical shell. (a) With the help of a diagram, explain the principle and working of a moving coil | 5 32 galvanometer. (b) What is the importance of a radial magnetic field, and how is it produced? A device 'X' is connected to an AC source.  $V = V_0 \sin \omega t$ . The variation of voltage, current and power in one cycle is shown in the following graph: (a) Identify the device 'X'. (b) Which of the curves, A, B, and C, represent the voltage, current, and power consumed by the circuit? Justify your answer. (c) How does its impedance vary with the frequency of the AC source? (d) Obtain an expression for the current in the circuit and its phase relation with AC voltage. (i) Calculate the radius of curvature of an equi-concave lens of refractive index 1.5 when 33 kept in a medium of refractive index 1.4 to have a power of -5D. (ii) Draw a labelled ray diagram to show the formation of an image at the least distance of vision in an astronomical telescope. (iii) Using the data given below, state which of the given lenses you prefer to use as an eyepiece and the objective to design a compound microscope. Lens **Power Aperture** 20D 0.02mA 10D 0.02mВ C 10D 0.05mD 1.0D 0.1mOR When a tiny circular obstacle is placed in the path of light from a distant source, a (i) bright spot is seen at the centre of the obstacle. Explain why? (ii)
  - (ii) If a diffraction pattern is observed using a beam of red light, then replacing the red light with blue light will cause the diffraction bands to become broader. Explain why?
  - (iii) How will you differentiate interference and diffraction through observation?

### **BRAIN INTERNATIONAL SCHOOL** SESSION 25-26

# PRACTICE PAPER-2 CLASS – XIITH **SUBJECT: PHYSICS (042)**

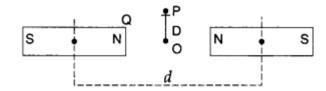
**CLASS: XII SUBJECT: PHYSICS** 

M.M.-70TIME:3 HOURS

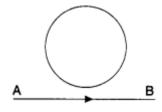
#### **General Instructions:**

- (1) There are **33 questions** in all. All questions are compulsory.
- (2) This question paper has five sections: Section A, Section B, Section C, Section D and Section E.
- (3) All the sections are compulsory.
- (4) Section A contains sixteen questions, twelve MCQs and four Assertion Reasoning based of 1 mark each; Section B contains five questions of two marks each; Section C contains seven questions of three marks each; Section D contains two case study-based questions of four marks each, and Section E contains three long answer questions of five marks each.
- (5) There is no overall choice. However, an internal choice has been provided for one question in Section B, one in Section C, one in each CBQ in Section D, and all three questions in Section E. You have to attempt only one of the choices in such questions.
- (6) Use of calculators is not allowed.
- (7) You may use the following values of physical constants wherever necessary
  - (a)  $c = 3 \times 10^8 \text{ m/s}$
  - (b)  $m_e = 9.1 \times 10^{-31} \text{ kg}$
  - (c)  $m_p = 1.7 \times 10^{-27} \text{ kg}$ (d)  $e = 1.6 \times 10^{-19} \text{ C}$

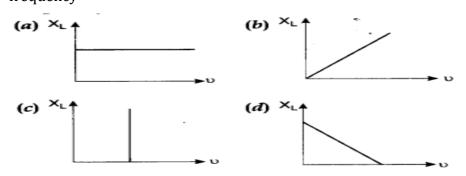
  - (e)  $\mu_0 = 4\pi \times 10^{-7} \text{ T mA}^{-1}$
  - (f)  $h = 6.63 \times 10^{-34} \text{ J s}$
  - (g)  $\varepsilon_0 = 8.854 \text{ x} 10^{-12} \text{C}^2 \text{N}^{-1} \text{m}^{-2}$


# Section -A

- **1.** A charge 'q' is placed at the centre of a room having cubical shape. Find the electric flux through each wall of the room
- (a)  $\frac{q}{6\varepsilon_0}$  (b)  $\frac{q}{4\varepsilon_0}$  (c)  $\frac{q}{2\varepsilon_0}$  (d)  $\frac{q}{\varepsilon_0}$
- **2.** In a moving coil galvanometer, the deflection  $(\Phi)$  on the scale by a pointer attached to the spring is:


  - (a)  $\left(\frac{NA}{kB}\right)I$  (b)  $\left(\frac{N}{kAB}\right)I$  (c)  $\left(\frac{NAB}{k}\right)I$  (d)  $\left(\frac{NAB}{kI}\right)I$

- **3.** Two identical bar magnets are fixed with their centres at a distance d apart. A stationary charge Q is placed at P in between the gap of the two magnets at a distance D from the centre O as shown in the


figure. The force on the charge Q is



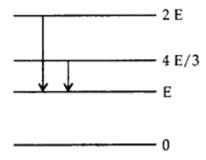
- (a) zero
- (b) directed along OP
- (c) directed along PO
- (d) directed perpendicular to the plane of the paper
- **4.** In the given figure, the current from A to B in the straight wire is decreasing. The direction of the induced current in the loop is A



- (a) clockwise
- (b) anticlockwise
- (c) changing
- (d) nothing can be said
- 5. Which of the following graphs represents the correct variation of inductive reactance  $X_L$  with frequency v?



- **6.** If E and B denote electric and magnetic fields, respectively, which of the following is dimensionless?
  - (a)  $\sqrt{\mu_0 \epsilon_0} \frac{E}{B}$


(b)  $\mu_0 \varepsilon_0 \frac{E}{B}$ 

(c)  $\mu_0 \varepsilon_0 \left(\frac{B}{E}\right)^2$ 

- (d)  $\frac{E}{\varepsilon_0} \frac{\mu_0}{B}$
- **7.** Two thin lenses of focal lengths 20 cm and 40 cm are held in contact. If an object is placed at infinity, then the image will be formed by the combination at

2

- (a) 10 cm
- (b) 20 cm
- (c) 40 cm
- (d) infinity
- **8.** The refractive index of glass is 1.5 for light waves of wavelength  $\lambda$  = 6000 A<sup>0</sup> in vacuum. Its wavelength in glass is:
  - (a) 2000 Å
  - (b) 4000 Å
  - (c) 1000 Å
  - (d) 3000 Å
- 9. The adjoining figure indicates the energy levels of a certain atom; when the system moves from 2E to E level, a photon of wavelength  $\lambda$  is emitted. The wavelength of the photon produced during its transition from 4E/3 to E is:



- (a)  $\lambda/3$
- (b) 3λ/4
- (c)  $4\lambda/3$
- (d) 3\u03a
- **10.** The binding energies per nucleon for a deutron and an  $\alpha$ -particle are  $x_1$  and  $x_2$ , respectively. The energy Q released in reaction  ${}_1H^2 + {}_1H^2 \rightarrow {}_2He^4 + Q$  is:
  - (a)  $4(x_1 + x_2)$
  - (b)  $4(x_1 x_2)$
  - (c)  $2(x_1 + x_2)$
  - (d)  $4(x_2-x_1)$
- **11.** The mobility of conduction electrons is greater than that of holes since electrons
  - (a) are negatively charged.
  - (b) are lighter
  - (c) require smaller energy to move through the crystal lattice.
  - (d) Undergo a smaller number of collisions.

- **12.** In p-type semiconductor, the conduction current is due to
  - (a) Holes
  - (b) Atoms
  - (c) Electrons
  - (d) Protons

**Directions:** These questions consist of two statements, each printed as Assertion and Reason. While answering these questions, you must choose any of the following four responses.

- (a) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion.
- (b) If both assertion and reason are correct, then reason is not a correct explanation of assertion.
- (c) If the Assertion is correct but the Reason is incorrect.
- (d) If both the Assertion and Reason are incorrect.
- **13.Assertion:** If the distance between parallel plates of a capacitor is halved and the dielectric constant is three times, then the capacitance becomes 6 times.

**Reason:** The capacity of the capacitor does not depend upon the nature of the dielectric material.

- **14.Assertion:** Induced e.m.f. will always occur whenever there is a change in magnetic flux. **Reason:** Current is always induced whenever there is a change in magnetic flux.
- **15.Assertion:** Though the light of a single frequency (monochromatic) is incident on a metal, the energies of emitted photoelectrons are different.

**Reason:** The energy of electrons emitted from inside the metal surface is lost in collision with the other atoms in the metal.

**16. Assertion:** The minimum and maximum wavelength ratio is <sup>3</sup>/<sub>4</sub> in the Lyman series. **Reason:** Lyman series constitute spectral lines corresponding to the transition from higher energy to the ground state of the hydrogen atom.

# **Section B**

- **17.**A potential difference of 6 V is applied across a conductor of length 0.12 m. Calculate the drift velocity of electrons if the electron mobility is  $5.6 \times 10^{-6}$  m<sup>2</sup> V<sup>-1</sup> s <sup>-1</sup>.
- **18.** Define magnetic field strength. Give its SI unit.
- **19.** Will the current be induced if a square loop of conducting material is moved with a constant velocity fully inside a uniform magnetic field perpendicular to the field? Explain.
- **20.** The de-Broglie wavelengths associated with an electron and proton are equal. Prove that the electron's kinetic energy is greater than that of the proton.

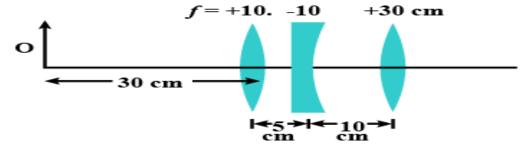
- **21.** What happens to the width of the depletion layer of a p-n junction when it is
  - (i)forward biased?
- (ii)reverse biased?

OR

Draw a labelled energy band diagram of a P-type and N-type semiconductor.

### **Section C**

- **22.** (*a*) What characteristic property of nuclear force explains the constancy of binding energy per nucleon (BE/A) in the range of mass number 'A' lying 30 < A < 170?
- (*b*) Show that the density of nucleus over a wide range of nuclei is constant independent of mass number *A*.
- **23.**a) Calculate the shortest wavelength of the spectral lines emitted in the Balmer series. (Rydberg constant =  $10^7$ m<sup>-1</sup>)
  - b) In which part of the electromagnetic spectrum all the wavelengths of the Balmer series fall?


OR

The total ground state energy of any hydrogen atom is -13.6 eV, then calculate:

- (i) total energy, (ii) kinetic energy and (iii) potential energy in the first excited state?
- **24.**(a) Draw the circuit diagram of a Full wave rectifier. Also, draw the input & Output waveforms.
  - (b) In half-wave rectification, what is the output frequency if the input frequency is 50 Hz? What is the output frequency of a full-wave rectifier for the same input frequency?
- 25. Identify the constituent radiation of the Electromagnetic Spectrum, which
  - (i) is used to study crystal structure.
  - (ii) is absorbed by the Ozone layer in the atmosphere.
  - (iii) Mention one more application for each of this radiation

OR

Find the position of the image formed by the lens combination given in the figure.



- **26.** State Huygens's postulates of wave theory. Using this, verify the laws of refraction.
- **27.**Using Ampere's circuital law, obtain an expression for the magnetic field along the axis of a current carrying solenoid of length *l* and having N number of turns.
- **28.** Using Gauss's law, derive an expression for electric field intensity due to an infinitely long, straight wire of linear charge density  $\lambda$  C/m.

### **Section D**

- **29.** Total internal reflection is the phenomenon of light bouncing back into the same medium when light travels from one medium to another. For total internal reflection to take place, light has to travel from denser to rarer medium, and the angle of incidence has to be greater than the critical angle. Multiple internal reflections in diamonds, totally reflecting prisms, and mirages are some examples of total internal reflection.
  - i) The refractive index of a material is  $\sqrt{2}$ . What should be the value of the incident angle so that the light undergoes total internal reflection?

A)  $\geq 45^{\circ}$ 

 $B) \leq 45^{\circ}$ 

 $C) > 45^{\circ}$ 

D)  $< 45^{\circ}$ 

- ii) For a ray of light entering from glass to water, which of the following statements is true for the critical angle
  - A) Maximum for red colour and minimum for violet colour
  - B) Maximum for violet colour and minimum for red colour
  - C) is independent of colour of incident light
  - D) Maximum for yellow colour
- iii) What will be the value of the angle of reflection when the angle of incidence is equal to the critical angle?

A) 30°

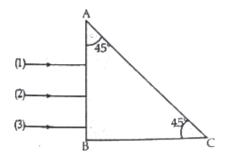
B) 45°

B) 60°

D) 90°

OR

What will be the speed of light in a medium whose critical angle is 30°?


A) 3×10<sup>8</sup> m/s

B) 3×10 <sup>-8</sup> m/s

C)  $6 \times 10^8 \text{ m/s}$ 

D) 1.5×10<sup>8</sup> m/s

iv) As shown in the figure, Three rays 1,2 & 3 of different colours fall normally on one of the sides of an isosceles right angle prism. The refractive index of the prism for these rays is 1.39, 1.47 and 1.52, respectively. Which of these waves will get internally reflected?



| A)       | 1 | &   | 2 |
|----------|---|-----|---|
| $\Delta$ | _ | CX. | _ |

B) 2 & 3

D) only 2

**30.** The electrolytic cell is a simple device that maintains a steady current in an electric circuit. A cell has two electrodes: positive (P) and negative (N). They are immersed in an electrolytic solution. Dipped in the solution, the electrodes exchange charges with the electrolyte. When a source of emf  $\varepsilon$  is connected to an external resistance R, the voltage  $V_{\text{ext}}$  across R is given by  $V_{\text{ext}} = IR = \frac{\varepsilon}{R+r}$  R, where 'r' is the internal resistance of the source.

- i) A current of 2 A flows through a 2  $\Omega$  resistor when connected across a battery. The same battery supplies a current of 0.5 A when connected across a  $9\Omega$  resistor. The internal resistance of the battery is
  - A) 1/3 Ω

B) 3 Ω

C)  $0.5 \Omega$ 

- D) 1 Ω
- ii) Maximum current can be drawn from the cell when
  - A) R=∞

B) R = 0

C) R= r

D) r = 0

OR

The maximum current that can be drawn from the cell is

A)  $I = \frac{\varepsilon}{R+r}$ 

B)  $I = \frac{\varepsilon}{r}$ 

C)  $I = \frac{\varepsilon}{R}$ 

- D)  $I = \frac{V}{R+r}$
- iii) A battery has an emf of 4V and internal resistance r. When the battery is connected to an external resistance of 2  $\Omega$ , a current of 1 A flows through the circuit. How much current will flow if the terminals are directly connected?
  - A) 0 A

B) 1 A

C) infinite

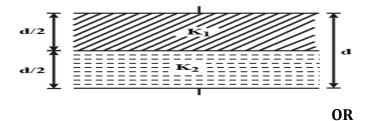
- D) 2 A
- iv) For an open circuit, which of the following statements is true
  - A)  $\varepsilon = V$

B)  $\varepsilon > V$ 

C)  $\epsilon < V$ 

D)  $\epsilon \leq V$ 

# **Section E**


- **31.(a)** A resistor of 200  $\Omega$  and a capacitor of 15.0 mF are connected in series to a 220 V, 50 Hz AC source.
  - (i) Calculate the current in the circuit;
  - (ii) Calculate the voltage (rms) across the resistor and the capacitor.

- (iii) Is the algebraic sum of these voltages more than the source voltage? If yes, resolve the paradox.
- (b) In a series LR circuit, the inductive reactance (X<sub>L</sub>) is numerically equal to resistance(R) of a resistor used. (i.e. X<sub>L</sub>=R) The power factor of the circuit is P<sub>1</sub>. When a capacitor with capacitance
   (C) such that X<sub>L</sub> = X<sub>C</sub> is put in the circuit, the power factor becomes P<sub>2</sub>. Calculate P<sub>1</sub>/P<sub>2</sub>.

OR

Explain, with the help of a diagram, the principle and the workings of a step-up transformer, and obtain the expression for the transformer equation.  $\frac{i_p}{i_s} = \frac{v_s}{v_p} = \frac{N_s}{N_p}$ , where the symbols have their usual meanings.

- **32. (a)** What is a capacitor? Deduce an expression for the capacitance of a parallel plate capacitor fully filled with dielectric medium between the plates.
  - **(b)** A parallel plate capacitor of plate area A and separation d is filled with dielectrics of dielectric constant  $K_1$  and  $K_2$ , as shown in the figure. Find the net capacitance of the capacitor.



A parallel plate capacitor is charged by a battery. After some time, the battery is disconnected, and a dielectric slab of dielectric constant K is inserted between the plates. What change will take place in the following:

- (i) Charge on the plates
- (ii) the capacitance of the capacitor
- (iii) potential difference between the plates
- (iv) electric field intensity between the plates
- (v) the energy stored in the capacitor? Justify your answer in each case.
- **33. (A)** Draw a ray diagram to form an image using a compound microscope. Write the expression for its magnifying power, when the image is formed at infinity.
- **(B)** A compound microscope uses an objective lens of a focal length of 4 cm and an eyepiece lens of a focal length of 10 cm. An object is placed at 6 cm from the objective lens. Calculate the magnifying power of the compound microscope.

OR

In Young's double-slit experiment, the two slits are 0.15 mm apart. The light emitted by the source has a wavelength of 450 nm. The screen is 2 m away from the slits.

- (i) Find the distance of the second bright fringe and the third dark fringe from the central maximum.
- (ii) Find the fringe width.
- (iii) What will happen to the fringe width if the whole setup is immersed in water with a refractive index of 4/3?