## **ASSIGNMENT NO. 4**

**SUBJECT: CHEMISTRY** 

## **CLASS-XII**

OCTOBER,2025

## **Chapter:3 Chemical kinetics**

- 1. Identify the reaction order from the following rate constent,k=2.3×10<sup>-5</sup>L mol<sup>-1</sup>S<sup>-1</sup>.
- 2. Why does the rate of reaction not remain constent throughout the reaction process?
- 3. The rate constant for a zero order reaction in A is 0.0030 mol <sup>-1</sup>S<sup>-1</sup>. How long will it take for the initial concentration of A to fall from 0.10 M to 0.075 M?
- 4. A reaction has half-life of 10 min.
  - (i) calculate the rate constant for the first order reaction.
  - (ii) what fraction of reactant will be left after an hour of the reaction?
- 5. Why rate of reaction increase by increasing temperature?
- 6. The rate of a particular reaction quadruples when the temperature changes from 293K to 313K. Calculate activation energy.
- 7. If the decomposition of nitrogen oxide as  $2N_2O_5$ —>  $4NO_2 + O_2$

follows a first order kinetics.

- (i) Calculate the rate constant for a 0.05 M solution if the instantaneous rate is  $1.5 \times 10^{-6}$  mol/l/s?
- ii) What concentration of  $N_2O_6$  would give a rate of 2.45 x  $10^{-5}$  mol  $L^{-1}s^{-1}$  Rate = 2.45 x  $10^{-5}$  mol  $L^{-1}s^{-1}$
- 8. Write the difference between order and molecularity of reaction.
- 9.Draw a schematic graph showing how the rate of a first ord reaction changes in concentration of reactants.
- 10. Identify the reaction order from the following rate constant,k=2.3×10<sup>-5</sup>L mol<sup>-1</sup>S<sup>-1</sup>.
- 11. Why does the rate of reaction not remain constent throughout the reaction process?
- 12. The rate constant for a zero order reaction in A is 0.0030 mol <sup>-1</sup>S<sup>-1</sup>. How long will it take for the initial concentration of A to fall from 0.10 M to 0.075 M?
- 13. A reaction has half-life of 10 min.
  - (i) calculate the rate constant for the first order reaction.
  - (ii) what fraction of reactant will be left after an hour of the reaction?