Vikas Puri, New Delhi

ASSIGNMENT NO. 4

SUBJECT: MATHEMATICS

CLASS-XII

OCTOBER,2025

Ch Vectors and 3d

Quesi Show that the points with position vectors $\vec{a} - 2\vec{b} + 3\vec{c} - 2\vec{a} + 3\vec{b} + 2\vec{c}$, and $-8\vec{a} + 13\vec{b}$ are Collinear

Quesz if the position vector \vec{a} of a point (12,n) is such that $|\vec{a}|$ = 13 find n

Ques3 find a vector of magnitude 5 units which is parallel to $2\hat{i} - \hat{j}$

Ques4 if $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = 3\hat{i} + 2\hat{j} - \hat{k}$ find $(\vec{a} + 3\vec{b}) \cdot (2\vec{a} - \vec{b})$

Ques5 for any vector \vec{r} , prove that $\vec{r} = (\vec{r} \cdot \hat{\imath})\hat{\imath} + (\vec{r} \cdot \hat{\jmath})\hat{\jmath} + (\vec{r} \cdot \hat{k})\hat{k}$

Ques6 if \hat{a} and \hat{b} are unit vectors inclined at an angle θ then prove that $\sin\frac{\theta}{2} = \frac{1}{2}|\hat{a} - \hat{b}|$

Quesy find $|\vec{a}|$ and $|\vec{b}|$ if $(\vec{a} - \vec{b})$. $(\vec{a} + \vec{b}) = 27$ and $|\vec{a}| = 2|\vec{b}|$

Ques8 if two vectors \vec{a} and \vec{b} are such that $|\vec{a}|=3$, $|\vec{b}|=2$ and \vec{a} . $\vec{b}=6$ find $|\vec{a}+\vec{b}|$ and $|\vec{a}-\vec{b}|$

Ques9 if \hat{a} and \hat{b} are unit vectors inclined to an angle θ then prove that $\cos \frac{\theta}{2} = \frac{1}{2} |\hat{a} + \hat{b}|$

Ques10 if $\vec{a} = 5\hat{i} - \hat{j} - 3\hat{k}$ and $\vec{b} = \hat{i} + 3\hat{j} - 5\hat{k}$ then show that the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ are orthogonal

Ques11 find a unit vector perpendicular to the plane ABC where A,B,C are A (3,-1,2) B(1,-1,-3) and C(4,-3,1) resp. hint $\hat{n} = \frac{\overrightarrow{AB} \times \overrightarrow{AC}}{|\overrightarrow{AB} \times \overrightarrow{AC}|}$

Ques12 Given $|\vec{a}| = 10$, $|\vec{b}| = 2$ and $\vec{a} \cdot \vec{b} = 12$ find $|\vec{a} \times \vec{b}|$

Ques13 show that $(\vec{a} \times \vec{b})^2 = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b} \end{vmatrix}$

Ques14 if \vec{a} , \vec{b} , \vec{c} are position vectors of the verticesA, B, C of a $\triangle ABC$, show that area of $\triangle ABC$ is $\frac{1}{2} |\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}|$ and deduce the condition for collinear

Ques15 for any three vectors \vec{a} , \vec{b} and \vec{c} show that $\vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times (\vec{c} + \vec{a}) + \vec{c} \times (\vec{a} + \vec{b}) = \vec{0}$

Ques16. determine the point in XY -plane which is equidistant from three points A(2,0,3) B(0,3,2) C(0,0,1) Ques17. find the ratio in which the line joining the points (1,2,3) and (-3,4,-5) is divided by xy-plane .find the coordinate of point of division. Ques18. A vector \overrightarrow{OP} is inclined to ox at 45° and OY at 60° find the angle at which \overrightarrow{OP} is inclined at OZ Ques19. the Cartesian equations of a line are 6x-2=3y+1=2z-2. find its direction ratios and also find vector equation of a line Ques 20 if the points A(-1,3,2) B(-4,2,-2) c(5,5, γ) are collinear. find the value of γ Ques21 find the equation of the line passing through the points A(-1,3,-2) and perpendicular to lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$ Ques22. find foot of perpendicular from the point (0,2,3) on the line $\frac{x+3}{5} = \frac{y-1}{2} = \frac{z+4}{3}$. also find the Length of perpendicular Ch linear programmimg Q 1 If the feasible region for a LPP is _____, then the optimal value of the objective function Z = ax + by may or may not exist. Q 2 In a LPP if the objective function Z = ax + by has the same maximum value on two corner points of the feasible region, then every point on the line segment joining these two points give the same value. Q 3 The closed half plane represented by $5x + 2y - 10 \ge 0$ contains point (1, 0). Q 4 In LPP, the objective function is always Q 5 In a LPP if the objective unction Z = ax + by has the same minimum value on two corner points of the feasible region, then every point on the line segment joining these two points give the same minimum value. Q 6 If the feasible region for a LPP is unbounded, then the optimal value of the objective function Z = ax + by mayor may not exist. Q 7 Corner points of the feasible region determined by the system f linear constraints are (0, 3), (1, 1) and (3, 0). Let Z = px + qy, where p, q > 0. Condition on p and q so that the minimum value of Z occurs at (3, 0) and (1, 1) is: (a) p = 2q(b) p = q(c) p = 3q(d) q = 2pQ 8 Corner points of the feasible region determined by the system of linear constraints are (0, 3), (1, 1) and (3, 0). Let Z = 4x + 5y be the objective function. The minimum value of Z occurs at: (a) (0, 3) only (b) (3, 0) only (c)(1, 1) only

- (d) any point of the line segment joining the points (1, 1) and (0, 3)
- Q 9 Corner points of the feasible region determined by the system of linear constraints are (0, 3), (1, 1) and (3, 0). Let Z = px + qy, where p, q > 0. Condition on p and q so that the minimum value of Z occurs at (3, 0) and (0, 3) is

(a)
$$p = 2q$$

$$(b) p = q$$

(c)
$$p = 3q$$

(d)
$$q = 2p$$