SHIKSHA BHARATI GLOBAL SCHOOL
Sector-8, Dwarka, New Delhi-110077

SKILL MODULE

Subject: Coding
Class- VI and VI

Coding is a creative activity that students from any discipline can engage in. It helps to
build computational thinking, develop problem solving skills, improve critical thinking
and exposure to real life situations to solve problems in various realms.

Therefore, CBSE is introducing ‘Coding’ as a skill module of 12 hours duration in classes
VI-VIII from the Session 2021-2022 onwards. The idea is also to simplify the coding
learning experience by nurturing design thinking, logical flow of ideas and apply this
across the disciplines. The foundations laid in the early years will help the students to
build the competencies in the area of Al, data sciences and other disciplines.

CBSE acknowledges the initiative by Microsoft India in developing this coding handbook
for class VI students. This handbook introduces concepts of coding and computational
thinking using real life examples and block coding with open source Make Code
platform. It uses gamified learning approach to make learning experience more
engaging. The book is intuitive with practical examples of theoretical concepts and
applied exercises. There are mini projects that students can work on. Additionally, the
handbook also focuses on creating exposure to ethics of coding and promotes empathy
among students by activities curated to demonstrate empathy and sensitivity.




The purpose of the book is to enable the future workforce to acquire coding skills early
in their educational phase and build a solid foundation to be industry ready.

Here's a more detailed look at what a Coding skill module might entail:
Key Components of Coding Skill Module:
1. Readability

Readability ensures that code is easy to understand and follow. This is crucial for
collaboration among developers and long-term project sustainability. Good readability
includes:

Clear and meaningful variable, function, and class names.

Proper indentation and formatting.

Avoiding overly complex logic and deeply nested structures.

Adding comments where necessary but avoiding redundant or obvious ones.

Readable code reduces the learning curve for new developers and makes debugging
and maintenance more efficient.

2. Maintainability

Maintainability refers to how easily code can be updated, modified, and extended
over time. To achieve high maintainability, developers should:

Follow the Single Responsibility Principle (SRP) and modularize code.
Reduce tight coupling between components.
Write reusable and loosely coupled functions and classes.

Adhere to coding standards and best practices.

Apply the DRY (Don't Repeat Yourself) principle, which reduces redundancy and
ensures that functionality is written once and reused where necessary.

Follow the KISS (Keep It Simple, Stupid) principle, which encourages developers
to write simple and straightforward code rather than over-engineering
solutions.

Well-maintained code allows teams to adapt to changes, fix bugs, and implement new
features with minimal effort.




3. Efficiency

Efficient code optimizes performance and resource usage, ensuring the software runs
smoothly under various conditions. Best practices for efficiency include:

Choosing appropriate data structures and algorithms.

Minimizing unnecessary computations and memory consumption.
Optimizing database queries and caching mechanismes.

Using concurrency and parallelism when necessary.

Efficiency is critical for applications that require high-speed execution, such as real-
time systems, web services, and mobile applications.

4. Reliability

Reliability ensures that code functions correctly under expected conditions and
gracefully handles unexpected situations. To improve reliability, developers should:

Write comprehensive unit and integration tests.

Handle errors and exceptions properly.

Implement logging and monitoring for debugging and performance analysis.
Test edge cases and stress conditions.

Reliable code reduces downtime, improves user experience, and builds trust in the
software.

5. Security

Security protects code from vulnerabilities and threats, ensuring data integrity and
privacy. Secure coding practices include:

Validating and sanitizing user inputs to prevent injection attacks.
Implementing authentication and authorization mechanisms.
Encrypting sensitive data in transit and at rest.

Regularly updating dependencies and fixing security vulnerabilities.

Security is an ongoing concern, and developers must stay vigilant to evolving threats
and best practices.




Module Link:

For Class-VI
https://cbseacademic.nic.in/web material/codeingDS/classVI Coding Stu

dent Handbook.pdf

For Class-VII
https://cbseacademic.nic.in/web material/codeingDS/classVIl Coding Stu
dent Handbook.pdf



https://cbseacademic.nic.in/web_material/codeingDS/classVI_Coding_Student_Handbook.pdf
https://cbseacademic.nic.in/web_material/codeingDS/classVI_Coding_Student_Handbook.pdf
https://cbseacademic.nic.in/web_material/codeingDS/classVII_Coding_Student_Handbook.pdf
https://cbseacademic.nic.in/web_material/codeingDS/classVII_Coding_Student_Handbook.pdf

