

Brain International School Vikas Puri, New Delhi

ASSIGNMENT NO. 2

SUBJECT: MATHEMATICS CLASS-XII

MAY,2025

CHAPTER : RELATION AND FUNCTIONS

Q1 Let f: R \rightarrow R be the function defined by $f(x) = \frac{1}{2 - cosx} \forall x \in R$. Then, find range of f.

Q 2 Find the maximum number of equivalence relations on the set A = $\{1, 2, 3\}$.

Q3 Prove that relation R on Z defined by $(a, b) \in R \Leftrightarrow a - b$ is divisible by 5 is an equivalence relation on Z.

Q4 Let a relation R on R be defined as $R = \{(a, b) : 1 + ab > 0; a, b \in R\}$. Show that R is reflexive, symmetric, transitive.

Q5 Let R be the relation on N x N defined by, $(a, b)R(c, d) \Leftrightarrow ad(c + b) = bc(a + d)$.SHOW EQ

Q 6 If A = {1, 5, 6}, B = {7, 9} and R = {(a, b) $\in A \times B : |a - b| \text{ is even}}$. Then write the relation R. Q 22 R = {(1, 7), (1, 9), (5, 7), (5, 9)}

Q 7 In the set A = $\{1, 2, 3, 4, 5\}$, a relation R is defined by R = $\{(x, y) : x, y \in A \text{ and } x < y\}$. Then R is (b) Symmetric (c) Transitive (a) Reflexive (d) None Q 8Let A = $\{1, 2, 3, 4\}$ and R = $\{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1)\}$ be defined on set A. Then the equivalence classes of [1] is (b) [1, 2] (c) $\{1, 2\}$ (d) None (a)(1,2)Q 9 Let $A = \{1, 2\}$. Then number of reflexive relations defined on A is (a) 4(d) 0(b) 8(c) 16**Q** 10Let $A = \{1, 2, 3\}$. Then number of symmetric relations defined on A is (a) 8(b) 64 (c) 1(d) 0**Q** 11Let $A = \{1, 2\}$. Then number of reflexive and symmetric relations defined on A is (d) 1 (a) 8(b) 4(c) 2Q 12 Let R be a relation on the set N of natural numbers defined by nRm if n divides m. Then R is (a) Reflexive and symmetric (b) Transitive and symmetric (c) Equivalence (d) Reflexive, transitive but not symmetric Q 13Let L denote the set of all straight lines in a plane. Let a relation R be defined by l R m if and only if l is perpendicular to $m \forall l, m \in L$. Then R is (b) Symmetric (c) Transitive (a) Reflexive (d) None

CHAPTER 2 INVERSE TRIGO

Q 14 Which of the following is the principal value of $cosec^{-1}x$? **a)** $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ b) $\left[0,\pi\right]-\frac{\pi}{2}$ c) $\left\{\frac{\pi}{2}\right\}\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ d) $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]-\{0\}$ **Q 15** The domain of $sin^{-1}2x$ is **a)** [0,1] b) [-1,1] c) $\left[-\frac{1}{2},\frac{1}{2}\right]$ d) [-2,2]**Q 16** The domain of the function $cos^{-1}(2x-1)$ is **a)** [0,1] b) [-1,1] c) (-1,1) d) $[0,\pi]$ **Q 17** If $sin^{-1}x = y$, then **a)** $0 \le y \le \pi$ b) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ c) $0 \le y \le \pi$ d) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ **Q 18** The domain of the function defined by $f(x) = sin^{-1}\sqrt{x-1}$ is a) [1,2] b) [-1,1] c) [0,1] d) None of these **Q 19** The principal value of the expression $cos^{-1}[cos(-680^\circ))]$ is **a)** $\frac{2\pi}{9}$ b) $\frac{-2\pi}{9}$ c) $\frac{34\pi}{9}$ d) $\frac{\pi}{9}$ **Q20** The principal value of $sin^{-1}\left(\frac{-\sqrt{3}}{2}\right)$ is **a)** $-\frac{2\pi}{2}$ **b)** $-\frac{\pi}{2}$ **c)** $\frac{4\pi}{2}$ **d)** $\frac{5\pi}{2}$ **Q 21** Let $\theta = sin^{-1} (sin(-600^\circ))$, then value of θ is **a)** $\frac{\pi}{3}$ b) $\frac{\pi}{2}$ c) $\frac{2\pi}{3}$ d) $\frac{-2\pi}{3}$ **Q22** The value of $\cot(sin^{-1}x)$ is **a)** $\frac{\sqrt{1+x^2}}{x}$ b) $\frac{x}{\sqrt{1+x^2}}$ c) $\frac{1}{x}$ d) $\frac{\sqrt{1-x^2}}{x}$ **Q 23** If $tan^{-1}x = \frac{\pi}{10}$ for some $x \in \mathbf{R}$, then the value of $cot^{-1}x$ is **a)** $\frac{\pi}{5}$ **b)** $\frac{2\pi}{5}$ **c)** $\frac{3\pi}{5}$ **d)** $\frac{4\pi}{5}$ **Q 24** The value of $sin(2 sin^{-1}(.6))$ is **a)** .48 b) .96 c) 1.2 d) 1.48 **Q 25** If $sin^{-1}x + sin^{-1}y = \frac{\pi}{2}$, then value of $cos^{-1}x + cos^{-1}y$ is **a)** $\frac{\pi}{2}$ b) π c) 0 d) $\frac{2\pi}{3}$ **Q 26** The value of the expression $\sin [cot^{-1}(\cos(tan^{-1}1))]$ is 0 b) 1 c) $\frac{1}{\sqrt{3}}$ d) $\sqrt{\frac{2}{3}}$