

BLOOM PUBLIC SCHOOL C-8 Vasant Kunj, New Delhi Syllabus for the Session 2025-26

Class: XII Subject: Physics

MONTH	CHAPTERS	CONTENT	
	(NCERT TEXT		PRACTICAL/ACTI
	BOOK)		VITY
April	UNIT I Chapter1: Electric Charges and Fields	Electric charges, Conservation of charge, Coulomb's law- force between two-point charges, forces between multiple charges; superposition principle and continuous charge distribution. Electric field, electric field due to a point charge, electric field lines, electric dipole, electric field due to a dipole, torque on a dipole in uniform electric field. Electric flux, statement of Gauss's theoremand its applications to find field due to infinitely long straight wire, uniformly charged infinite plane sheet and wriformly charged thin arbarical shell (field	To determine the resistivity of two/ three wires by plotting a graph for potential difference versus current.
	Chapter 2: Electrostatic Potentialand Capacitance	uniformly charged thin spherical shell (field inside and outside). Electric potential, potential difference, electric potential due to a point charge, a dipole and system of charges; equipotential surfaces, electrical potential energy of a system of two- point charges and of electric dipole in an electrostatic field. Conductors and insulators, free charges and bound charges inside a conductor. Dielectrics and electric polarization, capacitors and capacitance, combination of capacitors in series and in parallel, capacitance of a parallel plate capacitor with andwithout dielectric medium between the plates, energy stored in a capacitor (no derivation, formulae only).	
May	UNIT II Chapter3: Current Electriciy	Electric current, flow of electric charges in a metallic conductor, drift velocity, mobility and their relation withelectric current; Ohm's law, V- I characteristics (linear and non-linear), electrical energy and power, electrical resistivity and conductivity, temperature dependence of	

	UNIT III Chapter 4: Magnetic Effect of Current and Magnetism	resistance, Internal resistance of a cell, potential difference and emf of a cell, combination of cells in series and in parallel, Kirchhoff's rules, Wheatstone bridge. Concept of magnetic field, Oersted's experiment. Biot - Savart law and its application to current carrying circularloop. Ampere's law and its applications to infinitely long straight wire. Straight solenoid (only qualitative treatment), force on a moving charge in uniform magnetic and electric fields. Force on a current- carrying conductor in a uniform magnetic field, force between two parallel current-carrying conductors-definition of ampere, torque experienced by a current loop in uniform magnetic field; Current loop as a magnetic dipole and itsmagnetic dipole moment, moving coil galvanometer its current sensitivity and conversion to ammeter and voltmeter.	To determine the resistance of a galvanometer by the half-deflection method and to find its figure of merit.
July	Chapter 5: Magnetism and Matter UNIT IV Chapter 6: Electromagne ticInduction	 Bar magnet, bar magnet as an equivalent solenoid (qualitative treatment only), magnetic field intensity due to a magnetic dipole (bar magnet) along its axis and perpendicular to its axis (qualitative treatment only), torque on a magnetic dipole (bar magnet) in a uniform magnetic field (qualitative treatment only), magnetic field lines. Magnetic properties of materials- Para-, dia- and ferro - magnetic substances with examples, Magnetization of materials, effect of temperature on magnetic properties. Electromagnetic induction; Faraday's laws, induced EMF and current; Lenz's Law, Eddy currents. Self and mutualinduction 	To convert the given galvanometer (of known resistance and figure of merit) into a voltmeter of the desired range and to verify the same OR to convert the given galvanometer (of known resistance and figure of merit) into an ammeter of the desired range and to verify the same.
August	Chapter 7: Alternating Current	Alternating currents, peak and RMS value of alternating current/voltage; reactance and impedance; LCR series circuit (phasors only), resonance, power in AC circuits, power factor, wattless current. AC generator, Transformer.	

	UNIT V Chapter 8: Electromagnetic Waves UNIT VI Chapter 9: Ray Opticsand Optical Instruments	Electromagnetic waves, their characteristics, their Transverse nature (qualitative ideas only). Electromagnetic spectrum (radio waves, microwaves, infrared, visible, ultraviolet, X- rays, gamma rays) including elementary facts about their uses. Refraction of light, total internal reflection and its applications, optical fibers, refraction at spherical surfaces, lenses, thin lens formula, lensmaker's formula, magnification, power of a lens, combination of thin lenses in contact, refraction of light through a prism. Optical instruments: Microscopes and astronomical telescopes (reflecting and refracting) and their magnifying powers.	To obtain a lens combination with specified focal length by using two lenses from a given set of lenses.
Septem ber	Chapter 9: Ray Opticsand Optical Instruments (cont'd)	Refraction of light, total internal reflection and its applications, optical fibers, refraction at spherical surfaces, lenses, thin lens formula, lensmaker's formula, magnification, power of a lens, combination of thin lenses in contact, refraction of light through a prism. Optical instruments: Microscopes and astronomical telescopes (reflecting and refracting) and their magnifying powers.	To study nature and the size of the image formed by a convex lens. (for different distances of the candle from the lens)
	UNIT VI Chapter 10: Wave Optics	Wave front and Huygen's principle, reflection and refraction of plane wave at a plane surface using wave fronts. Proof of laws of reflection and refraction using Huygen's principle. Interference, Young's double slit experiment and expression for fringe width, coherent sources and sustained interference of light, diffraction due to a single slit, width of central maximum.	To observe diffraction of light due to a thin slit.
	UNIT VII Chapter 11: Dual Nature of Radiation and Matter	Dual nature of radiation, Photoelectric effect, Hertz and Lenard's observations; Einstein's photoelectric equation-particle nature of light. Experimental study of photoelectric effect Matter waves-wave nature of particles, de- Broglie relation	To study the effect of intensity of light (by varying distance of the source) on an LDR.
October	UNIT VIII Chapter 12: Atom	Alpha-particle scattering experiment; Rutherford's model of atom; Bohr model of hydrogen atom, Expression for radius of nth possible orbit, velocity and energy of	

Chapter 13: Nuclei	electron in his orbit, of hydrogen line spectra (qualitativetreatment only). Composition and size of nucleus, nuclear force Mass- energy relation, mass defect; binding energy per nucleonand its variation with mass number; nuclear fission, nuclear fusion.	
UNIT IX Chapter 14: Semiconductor Electronics: Materials, Devices and simple Circuit	Energy bands in conductors, semiconductors and insulators (qualitative ideas only) Intrinsic and extrinsic semiconductors- p and n type, p- n junction Semiconductor diode - I-V characteristics in forward and reverse bias, application of junction diode -diode as a rectifier.	To draw the I-V characteristic curve for a p-n junction diode in forward and reverse bias.

November	Revision Preboard Exam 1	
December	Revision Preboard I	Exam 2
January	Revision Board Practicals	
February	Board Exam	
March	Board Exam	
maron	Dourd Lixani	
PERIODIC ASSESSMENT -1		Chapter 1: Electric Charge and Fields
		Chapter 2: Electrostatic Potential and
		Capacitance
		Supusitunes
PERIODIC ASSESSMENT -2		Chapter 3: Current Electricity
I LIMOD		Chapter 5. Current Electricity
		Chapter 4: Moving charge and Magnetism
		Chapter 5: Magnetism and Matter

TERM-I EXAM	Chapter 1: Electric Charge and Fields
	Chapter 2: Electrostatic Potential and
	Capacitance
	Chapter 3: Current Electricity
	Chapter 4: Moving charge and Magnetism
	Chapter 5: Magnetism and Matter
	Chapter 6: Electromagnetic induction
	Chapter 7: Alternating Currents
	Chapter 8: Electromagnetic Waves
PREBOARD EXAMINATION	Chapter 1: Electric Charge and Fields
	Chapter 2: Electrostatic Potential and
	Capacitance
	Chapter 3: Current Electricity
	Chapter 4: Moving charge and Magnetism
	Chapter 5: Magnetism and Matter
	Chapter 6: Electromagnetic induction
	Chapter 7: Alternating Currents
	Chapter 8: Electromagnetic Waves
	Chapter 9: Ray Optics and Optical Instruments
	Chapter 10: Wave Optics
	Chapter 11: Dual Nature of Radiation and
	Matter
	Chapter 12: Atom and Nuclei
	Chapter 13: Nuclei
	Materials Devices and simple Circuit
	Materials, Devices and simple Circuit
BOARD EXAMINATION	Chapter 1: Electric Charge and Fields
	Chapter 2: Electrostatic Potential and
	Capacitance
	Chapter 3: Current Electricity
	Chapter 4: Moving charge and Magnetism
	Chapter 5: Magnetism and Matter
	Chapter 6: Electromagnetic induction
	Chapter 7: Alternating Currents
	Chapter 8: Electromagnetic Waves
	Chapter 9: Ray Optics and Optical Instruments
	Chapter 10: Wave Optics

Chapter 11: Dual Nature of Radiation and Matter Chapter 12: Atom and Nuclei Chapter 13: Nuclei Chapter 14: Semiconductor Electronics:
Chapter 14: Semiconductor Electronics: Materials, Devices and simple Circuit