Bloom Public School

BLOOM PUBLIC SCHOOL

C-8 Vasant Kunj, New Delhi Syllabus for the Session 2025-26

Class: IX

Subject: Mathematics

	SYLLABUS			
MONTH	CHAPTER (NCERT Text book)	CONTENT	PRACTICAL	
April	Ch.1: Number Systems	1. Review of representation of natural numbers, integers, and rational numbers on the number line. Rational numbers as recurring/ terminating decimals. Operations on real numbers. 2. Examples of non-recurring/non-terminating decimals. Existence of non-rational numbers (irrational numbers) such as $\sqrt{2}$, $\sqrt{3}$ and their representation on the number line. Explaining that every real number is represented by a unique point on the number line and conversely, viz. every point on the number line represents a unique real number. 3. Definition of nth root of a real number. 4. Rationalization (with precise meaning) of real numbers of the type $\frac{1}{a+b\sqrt{x}}$ and $\frac{1}{\sqrt{x}+\sqrt{y}}$ (and their combinations) where x and y are natural numbers and a and b are integers. 5. Recall of laws of exponents with positive real bases (to be	Activity 1- (Art-integration) Make a Square-root spiral with $\sqrt{2}$, $\sqrt{3}$, $\sqrt{4}$, $\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$, $\sqrt{8}$,, $\sqrt{17}$ and incorporate it in the tribal art of Cave Painting using your own ideas	

May	Ch 2: Polynomials (contd.)		
	Ch 2: Polynomials	allowing learner to arrive at the general laws.) Definition of a polynomial in one variable, with examples and counter examples. Coefficients of a polynomial, terms of a polynomial and zero polynomial. Degree of a polynomial. Constant, linear, quadratic and cubic polynomials. Monomials, binomials, trinomials. Factors and multiples. Zeros of a polynomial. Motivate and State the Remainder Theorem with examples. Statement and proof of the Factor Theorem. Factorization of ax²+bx+c, a ≠ 0 where a, b and c are real numbers, and of cubic polynomials using the Factor Theorem. Recall of algebraic expressions and identities. Verification of identities: (x+y+z)² = x²+y²+z²+ 2xy+2yz+2zx (x+y)³ = x³+ y³+3xy(x+y) (x-y)³ = x³- y³-3xy(x-y) x³+ y³= (x+y)(x²-xy+y²) x³+ y³=(x-y)(x²+xy+y²) x³+ y³+z³-3xyz=(x+y+z) (x²+y²+z²-xy-yz-zx) and their use in factorization of polynomials.	Activity 2- (Maths lab file) To verify the algebraic identity $(a + b)^2 = a^2 + 2ab + b^2$

	Ch-3 Coordinate Geometry	The Cartesian plane, coordinates of a point, names and terms associated with the coordinate plane, notations.	Activity 3- (Maths lab file) To find the values of abscissae and ordinates of various points given in a cartesian plane.
	Ch.4: Linear Equations in two variables	Recall of linear equations in one variable. Introduction to the equation in two variables. Focus on linear equations of the type ax + by + c=0. Explain that a linear equation in two variables has infinitely many solutions and justify their being written as ordered pairs of real numbers, plotting them and showing that they lie on a line.	Activity 4- (Maths lab file) Exemplifies a linear equation in two variables and its possible solutions using real life examples. Activity 5- (Art-integration)- Spider webs-Art integration in linear equations
July	Ch.4: Linear Equations in two variables (contd.)		
	Ch 5: Introduction to Euclid's Geometry.	History - Geometry in India and Euclid's geometry. Euclid's method of formalizing observed phenomenon into rigorous Mathematics with definitions, common/obvious notions, axioms/postulates and theorems. The five postulates of Euclid. Showing the relationship between axiom and theorem, for example:	Activity 6- (Maths lab file) To explain Euclid's 5th postulate with the help of a diagram.
	Ch 6: Lines and Angles	(Axiom) 1. Given two distinct points, there exists one and only one line through them. (Theorem) 2. (Prove) Two distinct lines cannot have more than one point in common. 1. (Motivate) If a ray stands on a line, then the sum of the two adjacent angles so	Activity 7- (Maths lab file) To verify experimentally that if two lines intersect, then (i) the vertically opposite angles are equal (ii) the sum of two adjacent angles is 180° (iii) the sum of all the four angles is 360°

August	Ch 6: Lines and Angles (contd.)	formed is 180 and the converse. 2. (Prove) If two lines intersect, vertically opposite angles are equal. 3. (Motivate) Lines which are parallel to a given line are parallel.	
	Ch.7: Triangles	1. (Motivate) Two triangles are congruent if any two sides and the included angle of one triangle is equal to any two sides and the included angle of the other triangle (SAS Congruence). 2. (Prove) Two triangles are congruent if any two angles and the included side of one triangle is equal to any two angles and the included side of the other triangle (ASA Congruence). 3. (Motivate) Two triangles are congruent if the three sides of one triangle are equal to three sides of the other triangle (SSS Congruence). 4. (Motivate) Two right triangles are congruent if the hypotenuse and a side of one triangle are equal (respectively) to the hypotenuse and a side of the other triangle. (RHS Congruence) 5. (Prove) The angles opposite to equal sides of a triangle are equal. 6. (Motivate) The sides opposite to equal angles of a triangle are equal.	Activity 8- (Maths lab file) To verify that the sum of the angles of a triangle is 180°.
September		Revision for Mid-Term Exami	nation

October	Ch 8:	1 (D) The 1:1	A -4:4- 0 (M-41-1-1-61-)
October	Quadrilaterals	1. (Prove) The diagonal divides a parallelogram into	Activity 9- (Maths lab file) To verify experimentally that
	(00000000000000000000000000000000000000	two congruent triangles.	the sum of the angles of a
		2. (Motivate) In a	quadrilateral is 360°.
		parallelogram opposite sides	
		are equal, and conversely.	Activity 10- (Maths lab file)
		3. (Motivate) In a	To verify that the quadrilateral
		parallelogram opposite	formed by joining the mid
		angles are equal, and	point of the sides of a
		conversely.	quadrilateral is a
		4. (Motivate) A quadrilateral is a parallelogram if a pair	parallelogram.
		of its opposite sides is	
		parallel and equal.	
		5. (Motivate) In a	
		parallelogram, the diagonals	
		bisect each other and	
		conversely.	
		6. (Motivate) In a triangle,	
		the line segment joining the	
		mid points of any two sides	
		is parallel to the third side	
		and in half of it and	
		(motivate) its converse.	
	C1 0	1 (Duaya) Equal abouts of a	A ativity 11 (Matha lah fila)
	Ch 9: Circles	1. (Prove) Equal chords of a circle subtend equal angles at	Activity 11- (Maths lab file) To prove that 'Equal chords
	Circles	the centre and (motivate) its	subtend equal angles at the
		converse.	center'.
		2. (Motivate) The	
		perpendicular from the	Activity 12- (Maths lab file)
		centre of a circle to a chord	To prove that "opposite angles
		bisects the chord and	of the cyclic quadrilateral are
		conversely, the line drawn through the centre of a circle	supplementary".
		to bisect a chord is	Activity 13
		perpendicular to the chord.	(Art-integration)- Students can
		3. (Motivate) Equal chords	make different art-forms using
		of a circle (or of congruent	circles or parts of circles like
		circles) are equidistant from	quadrants.
		the centre (or their	
		respective centres) and	
		conversely.	
		4. (Prove) The angle	
		subtended by an arc at the	
		centre is double the angle subtended by it at any point	
		on the remaining part of the	
		circle.	

		5. (Motivate) Angles in the same segment of a circle are equal. 6. (Motivate) If a line segment joining two points	
		subtends equal angle at two other points lying on the same side of the line containing the segment, the four points lie on a circle. 7.(Motivate) The sum of either pair of the opposite angles of a cyclic quadrilateral is 180° and its converse.	
November	Ch 9: Circles (contd.)		
	Ch 10: Heron's Formula	Area of a triangle using Heron's formula (without proof)	Activity 14 (Art-integration)- To calculate the area of a tile with a given design of triangles.
			Activity 15 To find area of rectangle, parallelogram and triangle.
December	Ch 11: Surface Areas and Volumes	Surface areas and volumes of spheres (including hemispheres) and right circular cones.	Activity 16- (in register) To find the relationship among the volumes of a right circular cone, a hemisphere and a right circular cylinder of equal radii and equal heights.
January	Ch 12: Statistics	Bar graphs, histograms (with varying base lengths), and frequency polygons.	Activity 17- (in register) To draw histograms for classes of equal widths and varying widths.
February	Annual Exam	Revision for Annual Exam.	1
ASSESSMENT SYLLABUS			

PERIODIC	Ch 1: Number System
ASSESSMENT -1	Ch 2: Polynomials
	Activity : Exemplifies a linear equation in two variables and
	its possible solutions using real life examples.
PERIODIC	Ch 8: Quadrilaterals
ASSESSMENT -2	Ch 9: Circles
	Activity: Finds areas of rectangle, parallelogram and triangle.
MID-TERM EXAM	Ch1: Number System
	Ch 2: Polynomials
	Ch 3: Coordinate Geometry
	Ch 4: Linear Equations in Two Variables
	Ch 5: Introduction to Euclid's Geometry
	Ch 6: Lines and Angles
	Ch 7: Triangles
ANNUAL EXAM	Ch1: Number System
	Ch 2: Polynomials
	Ch 3: Coordinate Geometry
	Ch 4: Linear Equations in Two Variables
	Ch 5: Introduction to Euclid's Geometry
	Ch 6: Lines and Angles
	Ch 7: Triangles
	Ch 8: Quadrilaterals
	Ch 9: Circles
	Ch 10: Heron's Formula
	Ch 11: Surface Areas and Volumes
	Ch 12: Statistics