BRAIN INTERNATIONAL SCHOOL

SUBJECT : MATHEMATICSCLASS : XIIOCT 2024CHAPTER : DIIFERENTIAL EQUATIONS

Q1. Write the order and degree of the differential equation $x \frac{dy}{dx} - \cos\left(\frac{d^2y}{dx^2}\right) = 0.$

Q2. Write the order and degree of the differential equation $y = px + \sqrt{1 + p^2}$, where $p = \frac{dy}{dx}$.

Q3. Show that the differential equation of which $y = 2(x^2 - 1) + ce^{-x^2}$ is a solution, is $\frac{dy}{dx} + 2xy = 4x^3$.

Q4. Show that the differential equation of which $cy^2 = 1 + 8y^2 \tan x$ is a solution, is $cos^2 x \frac{dy}{dx} = 4y^3$.

Q5. Solve each of the following differential equations.

(i)
$$\sqrt{4-x^2} \, dy + \sqrt{4+y^2} \, dx = 0$$

(ii)
$$e^{\frac{dy}{dx}} = (x+2)$$

(iii)
$$\sin^{-1}\left(\frac{dy}{dx}\right) = x + y$$

(iv)
$$\sqrt{1 + x^2 + y^2 + x^2y^2} + xy\frac{dy}{dx} = 0$$

(v)
$$\frac{dy}{dx} = \frac{3\left(e^{2x} + e^{4x}\right)}{e^{x} + e^{-x}}$$

(vi)
$$\cos^2(x-2y) = 1 - 2\frac{dy}{dx}$$

(vii)
$$(x^2 - 1)\frac{dy}{dx} + 2(x + 2)y = 2(x + 1)$$

(viii)
$$y + \frac{d}{dx}(xy) = x(\sin x + \log x)$$

(ix)
$$\frac{dy}{dx} + \frac{3x^2}{1+x^3} y = \frac{\sin^2 x}{1+x^3}$$

(x)
$$2x \frac{dy}{dx} = y + 6x^{\frac{5}{2}} - 2\sqrt{x}$$

Q6. Find the differential equation of the family of curves given by $y^2 - 2my + x^2 = m^2$.

Q7. Show that $y = \frac{a-x}{1+ax}$ is a solution of the differential equation $(1 + x^2)\frac{dy}{dx} + (1 + y^2) = 0$

Q8. Solve the differential equation : $\frac{dy}{dx} = \frac{x+y+1}{2x+2y+3}$.

Q9. Solve the differential equation : $(2x + y^3)\frac{dy}{dx} = y$.