BRAIN INTERNATIONAL SCHOOL

SUBJECT : MATHEMATICSCLASS : XIIJULY 2024CHAPTER : APPLICATIONS OF DERIVATIVES

Q1. Find the rate of change of volume of a cone of constant height with respect to radius of the base.

Q2. The side of an equilateral triangle is increasing at the rate of 0.5 cm/s. Find the rate of increase of its area when side is $4\sqrt{3}$ cm.

Q3. Show that the function $f(x) = (3x + 5)^3$ is increasing in R.

Q4. Show that the function $f(x) = \log(\cos x)$ is decreasing in $\left(0, \frac{\pi}{2}\right)$.

Q5. Show that the function $f(x) = \log_e x$ is an increasing function for x > 0.

Q6. The surface area of a spherical bubble is increasing at the rate of $2 \ cm^2/s$. Find the rate at which the volume is increasing at the instant if its radius is 6 cm.

Q7. A particle moves along a straight line in such a way that its distance from fixed origin is the square root of the quadratic function of time. Prove that the acceleration varies inversely as the cube of the distance.

Q8. What will be the height of a variable cone when its volume and radius are changing at the rate of 100 cm^2/s and 20 cm/s respectively and its radius is always 5 times of its height?

Q9. A particle moves in a straight line according to the formula $s = t^3 - 6t^2 - 15t$, where s represents the distance in meters and t represents the time in seconds. Find the time interval during which the speed of the particle decreases. $(speed = \frac{ds}{dt})$.

Q10. Find the interval in which the function $f(x) = 2x^3 - 15x^2 + 36x + 17$ is strictly increasing or strictly decreasing.

Q11. Prove that $\frac{x}{1+x} < \log(1+x) < x$ for all x > 0.

Q12. Find the interval in which the function $f(x) = \frac{4 \sin x - 2x - x \cos x}{2 + \cos x}$, is strictly increasing or strictly decreasing in (0, 2π).

Q13. Show that function $f(x) = x^2$ is strictly increasing function in $(0, \infty)$ without using derivatives.

Q14. Find whether the function $f(x) = \cos\left(2x + \frac{\pi}{4}\right)$, $\frac{3\pi}{8} < x < \frac{7\pi}{8}$ is increasing or decreasing.

Q15. A rectangle of the greatest area is inscribed in ellipse $x^2 + 4y^2 = 16$. Find the dimensions of the rectangle.

Q16. The combined resistance R of two resistors R_1 and $R_2(R_1, R_2 > 0)$ is given by $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$. If $R_1 + R_2 = C$, C is a constant, find R_1 and R_2 so that R is maximum.

Q17. Show that the height h of a right circular cylinder of maximum total surface area including the two ends that can be inscribed in a sphere of radius r is given by $h^2 = 2r^2 \left(1 - \frac{1}{\sqrt{5}}\right)$.