SOLUTIONS OF WORKSHEET

LIST AND ARRAY

Q1. Define a Python list. Explain the concept of mutability in the context of Python lists.
Definition of a Python List:

e A Python list is an ordered collection of items (or elements) which can be of different
types (e.g., integers, strings, objects).

o Lists are defined by placing the elements inside square brackets [], separated by commas.
Example:
my_list = [1, "hello™, 3.14, True]
Concept of Mutability:

o Mutability means that the elements of a list can be changed after the list has been
created.

e Lists in Python are mutable, meaning you can modify their contents, add new elements,
or remove existing ones.

Examples of Mutability:
1. Modifying Elements:
my_list[1] = "world"
Now my _list is [1, "world", 3.14, True]
2. Adding Elements:
my_list.append(42)
Now my _list is [1, "world", 3.14, True, 42]
3. Removing Elements:
my_list.remove(3.14)

Now my _list is [1, "world", True, 42]

Q2. What is an index in a Python list? What will happen if you try to access an index that is
out of the range of the list?

Index in a Python List:
e Anindex is a position number associated with each element in a list, starting from 0.
o The first element of the list is accessed with index 0, the second with index 1, and so on.
Example:
my_list = ["apple”, "banana", "cherry"]
print(my_list[0]) # Output: apple
print(my_list[1]) # Output: banana
print(my_list[2]) # Output: cherry
Accessing an Out-of-Range Index:

o Ifyou try to access an index that is outside the range of the list (i.e., an index that does
not exist), Python will raise an Index Error.

Example:
print(my_list[3]) # This will raise an Index Error: list index out of range

Q3. Explain the concept of negative indexing in Python lists. Give an example where
negative indexing might be useful.

Concept of Negative Indexing:
o Negative indexing allows you to access elements from the end of the list.

o The last element of the list can be accessed with index -1, the second last with -2, and so
on.

Example:

my_list = ["apple”, "banana", "cherry"]
print(my_list[-1]) # Output: cherry
print(my_list[-2]) # Output: banana
print(my_list[-3]) # Output: apple

Usefulness of Negative Indexing:

« Negative indexing is particularly useful when you want to access elements from the end
of a list without knowing its length.

Example Use Case:

Accessing the last element

last_item = my_list[-1]

print(last_item) # Output: cherry

Accessing the second last element
second_last_item = my_list[-2]
print(second_last_item) # Output: banana

Q4. What is list slicing in Python? How does list slicing differ from accessing individual
elements?

List Slicing:

o List slicing allows you to create a new list that contains a subset of the elements from the
original list.

« Slicing is done using the colon : operator inside square brackets.
Syntax:
new_list = my _list[start:stop:step]

o start: The starting index of the slice (inclusive).

e stop: The ending index of the slice (exclusive).

e step: The step size or interval between indices.
Example:

my _list =0, 1, 2, 3, 4, 5]

slicel = my_list[1:4] #1[1, 2, 3]
slice2=my _list[:3] #[0, 1, 2]
slice3=my list[2:]] #[2,3,4,5]

sliced = my list[::2] #]0, 2, 4]

Difference from Accessing Individual Elements:
e Accessing individual elements retrieves a single element using its index.
« Slicing retrieves a subset of elements, returning a new list with the selected elements.
Example:
Accessing an individual element
element = my_list[2] # Output: 2
Slicing the list
subset = my _list[1:4] # Output: [1, 2, 3]
Q5. List and explain any five methods available for Python lists.
1. append(x):
o Adds an element x to the end of the list.
o Example:
my_list =[1, 2, 3]
my_list.append(4)
Now my _listis [1, 2, 3, 4]
2. extend(iterable):

o Extends the list by appending all the elements from the given iterable (e.g.,
another list).

o Example:

my_list = [1, 2, 3]
my_list.extend([4, 5])
Now my _listis [1, 2, 3, 4, 5]
3. insert(i, x):
o Inserts an element x at the specified index i.
o Example:
my_list = [1, 2, 3]
my_list.insert(1, 'a")
Now my listis[1, 'a, 2, 3]
4. remove(X):
o Removes the first occurrence of the element x from the list.
o Example:
my_list =[1, 2, 3, 2]
my_list.remove(2)
Now my _list is [1, 3, 2]
5. pop([i]):

o Removes and returns the element at the specified index i. If i is not provided, it
removes and returns the last element.

o Example:
my_list =[1, 2, 3]
last_item = my_list.pop()
Now my _list is [1, 2] and last_item is 3
Q.5 What are arrays, and how are they different from lists in Python?
ANS-5 Comparison of Lists and Arrays in Python

1. Definition:

o Lists: Alist in Python is a collection of elements that can hold items of different data
types, including integers, strings, objects, and even other lists. Lists are part of Python’s
built-in data structures.

e Arrays: Arrays in Python can be created using the array module (for simple arrays) or
more commonly using libraries like NumPy for more complex numerical operations.
Arrays are collections of elements of the same data type.

N

. Data Types:

o Lists: Can hold elements of different data types.
my_list =[1, "apple”, 3.14, True]

Arrays: Typically hold elements of the same data type.

from array import array
my_array = array('i', [1, 2, 3, 4])

3. Performance:

o Lists: General-purpose and more flexible, but can be slower for numerical operations due

to their dynamic nature.
o Arrays: More efficient for numerical operations and large datasets due to their

homogeneous data types and optimized implementations in libraries like NumPy.

4. Functionality:

o Lists: Support a wide range of operations including insertion, deletion, and

concatenation.
e Arrays: Support mathematical operations, vectorized operations, and more advanced

numerical computations.

5. Usage:

o Lists: Use when you need a general-purpose, flexible container to hold elements of

various data types.
e Arrays: Use when you need to perform numerical operations, especially on large

datasets, and require higher performance and memory efficiency.

Q.6 When to Use Lists vs. Arrays

e Use Lists:
o When you need a container to hold heterogeneous data.
o When you need to frequently add or remove elements from the collection.
o When you need the flexibility of various data types and operations.
e Use Arrays:
o When you are working with large datasets of numerical data.
o When performance and memory efficiency are critical.
o When you need to perform vectorized operations or mathematical computations.

Q.7Converting Lists to Arrays and Vice Versa
Using the array Module:
e Listto Array:
from array import array
my_list =[1, 2, 3, 4]
my_array = array('i’, my_list)
print(my_array) # Output: array('i', [1, 2, 3, 4])
e Array to List:
my_list = list(my_array)

print(my_list) # Output: [1, 2, 3, 4]

